The formation of the Widmanstätten structure in meteorites
نویسندگان
چکیده
available online at http://meteoritics.org 239 © The Meteoritical Society, 2005. Printed in USA. The formation of the Widmanstätten structure in meteorites J. YANG* and J. I. GOLDSTEIN Department of Mechanical and Industrial Engineering, College of Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA *Corresponding author. E-mail: [email protected] (Received 16 October 2003; revision accepted 13 November 2004) Abstract–We have evaluated various mechanisms proposed for the formation of the Widmanstätten pattern in iron meteorites and propose a new mechanism for low P meteoritic metal. These mechanisms can also be used to explain how the metallic microstructures developed in chondrites and stony-iron meteorites. The Widmanstätten pattern in high P iron meteorites forms when meteorites enter the threephase field α + γ + Ph via cooling from the γ + Ph field. The Widmanstätten pattern in low P iron meteorites forms either at a temperature below the (α + γ)/(α + γ + Ph) boundary or by the decomposition of martensite below the martensite start temperature. The reaction γ → α + γ, which is normally assumed to control the formation of the Widmanstätten pattern, is not applicable to the metal in meteorites. The formation of the Widmanstätten pattern in the vast majority of low P iron meteorites (which belong to chemical groups IAB–IIICD, IIIAB, and IVA) is controlled by mechanisms involving the formation of martensite α2. We propose that the Widmanstätten structure in these meteorites forms by the reaction γ → α2 + γ → α + γ, in which α2 decomposes to the equilibrium α and γ phases during the cooling process. To determine the cooling rate of an individual iron meteorite, the appropriate formation mechanism for the Widmanstätten pattern must first be established. Depending on the Ni and P content of the meteorite, the kamacite nucleation temperature can be determined from either the (γ + Ph)/(α + γ + Ph) boundary, the (α + γ)/(α + γ + Ph) boundary, or the Ms temperature. With the introduction of these three mechanisms and the specific phase boundaries and the temperatures where transformations occur, it is no longer necessary to invoke arbitrary amounts of under-cooling in the calculation of the cooling rate. We conclude that martensite decomposition via the reactions γ → α2 → α + γ and γ → α2 + γ → α + γ are responsible for the formation of plessite in irons and the metal phases of mesosiderites,We have evaluated various mechanisms proposed for the formation of the Widmanstätten pattern in iron meteorites and propose a new mechanism for low P meteoritic metal. These mechanisms can also be used to explain how the metallic microstructures developed in chondrites and stony-iron meteorites. The Widmanstätten pattern in high P iron meteorites forms when meteorites enter the threephase field α + γ + Ph via cooling from the γ + Ph field. The Widmanstätten pattern in low P iron meteorites forms either at a temperature below the (α + γ)/(α + γ + Ph) boundary or by the decomposition of martensite below the martensite start temperature. The reaction γ → α + γ, which is normally assumed to control the formation of the Widmanstätten pattern, is not applicable to the metal in meteorites. The formation of the Widmanstätten pattern in the vast majority of low P iron meteorites (which belong to chemical groups IAB–IIICD, IIIAB, and IVA) is controlled by mechanisms involving the formation of martensite α2. We propose that the Widmanstätten structure in these meteorites forms by the reaction γ → α2 + γ → α + γ, in which α2 decomposes to the equilibrium α and γ phases during the cooling process. To determine the cooling rate of an individual iron meteorite, the appropriate formation mechanism for the Widmanstätten pattern must first be established. Depending on the Ni and P content of the meteorite, the kamacite nucleation temperature can be determined from either the (γ + Ph)/(α + γ + Ph) boundary, the (α + γ)/(α + γ + Ph) boundary, or the Ms temperature. With the introduction of these three mechanisms and the specific phase boundaries and the temperatures where transformations occur, it is no longer necessary to invoke arbitrary amounts of under-cooling in the calculation of the cooling rate. We conclude that martensite decomposition via the reactions γ → α2 → α + γ and γ → α2 + γ → α + γ are responsible for the formation of plessite in irons and the metal phases of mesosiderites, chondrites, and pallasites. The hexahedrites (low P members of chemical group IIAB) formed by the massive transformation through the reaction γ → αm → α at relatively high temperature in the twophase α + γ region of the Fe-Ni-P phase diagram near the α/(α + γ) phase boundary.
منابع مشابه
Petrology and geochemistry of whole rock of Shahdad meteorites
In this study, meteorite pieces, with total weight of 259 grams, have been studied which is not listed in the world bulletin of meteorites. In order to classify these samples, after preparing microscopic thin sections and performing accurate petrography, using geochemical data of the major elements and trace elements of whole rock, obtained from XRF and ICPMS methods in Zarazma company’s labora...
متن کاملFormation Kinetics of Structure H Gas Hydrate
This paper investigates the kinetics of structure H (sH) formation kinetics above and below the structure I (sI) formation equilibrium curve at temperatures of between 2°C and 6°C. Methane was used as a help gas and methylcyclohexane (MCH) was used as sH former. It was concluded that in the points above the sI formation equilibrium curve, at the first, the sI forms, and then converts to sH be...
متن کاملMathematical methods of data processing in the formation and evaluation of sectoral structure in agricultural enterprises
The sectoral structure of most agricultural enterprises is unbalanced and uncoordinated, which underlies the need in deepened research of its improvement. This paper is dedicated to the formation and evaluation of the sectoral structure with the use of mathematical methods of data processing. Mathematical economic modeling based on optimization and simulation models has been applied for the for...
متن کاملCosmic Walls and Filaments Formation in Modied Chaplygin Gas Cosmology
We want to study the perturbation growth of an initial seed of an ellipsoidal shape in Top-Hat collapse model of the structure formation in the Modied Chaplygin gas cosmology. Considering reasonable values of the constants and the parameters of the model under study, we can show that a very small deviation from spherical symmetry (ellipsoidal geometry) in the initial seed leads to a nal highly ...
متن کاملThe thermodynamic parameters of the formation of derivatives of 1-(4-nitrophenyl)-1H-Tetrazole (NPHT) with Boron Nitride nano-cage structure in different temperature conditions, the DFT method
In this study, the response is derived, high-energy material 1-(4-nitrophenyl)-1H-Tetrazole (NPHT) with boron nitridenano-cages in different conditions of temperature, density functional theory methods were studied. for this purpose, the material on both sides were geometrically optimized, then the calculation of the thermodynamic parameters were performed on all of them. The amount of ΔH, ΔS a...
متن کامل